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Abstract. We present the generalization of a theoretical model for segregation of granular mixtures due to
surface flows, published in J. Phys. I France 6, 1295 (1996). Our generalized model is valid for grains differ-
ing by their size and/or their surface properties; in the present paper, we describe the case of two species
with the same surface properties but two different sizes. The rolling stream is assumed to be homogeneous.
Exchanges between the grains at rest and the rolling stream are modelized via binary collisions. The model
predicts that during the filling of a two-dimensional silo, continuous segregation appears inside the static
phase: small (respectively large) grains tend to stop uphill (respectively downhill), although both species
remain present everywhere. This fits the observations when the size difference between the species is small.
When the size difference is large, a different regime is observed. We argue that in this case, segregation
occurs directly inside the rolling stream.

PACS. 47.55.Kf Multiphase and particle-laden flows – 83.10.Pp Particle dynamics –
83.70.Fn Granular solids

1 Introduction

Segregation is a phenomena commonly observed in gran-
ular materials that are poured, vibrated, or rotated [1].
Recently an experimental set up has focused much at-
tention [2–4]: inside a two-dimensional “granular Hele-
Shaw cell” (two vertical plates separated by a gap of ap-
proximately 5 mm), one pours a mixture of two granular
species differing by their size and/or their surface prop-
erties (shape, roughness, sticking). The flowing particles
stop, and progressively form a heap in the cell. Segregation
is then observed in the following way: if the two species
do not differ too much in size, a continuous segregation
is obtained with more large or smooth grains at the bot-
tom of the pile and more small or rough grains at the top,
the transition zone being a few centimeters (the order of
magnitude of the grain size is 0.5 mm). If the two species
have a large difference in size, there are two cases: when
the smaller grains are also the rougher, a complete segre-
gation is obtained with all the large grains at the bottom,
all the small ones at the top, and a transition zone be-
tween the two species of a few millimeters at maximum;
when the larger grains are also the rougher, we obtain
a spectacular effect called stratification: the particles de-
posit in alterning layers of different species, parallel to the
sandpile surface.
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The theoretical study of surface flows of a pure gran-
ular species has significantly progressed with the works of
and Mehta and Barker [5], and Bouchaud, Cates, Prakash,
and Edwards (BCRE) [6]. Recently in a first article of a
series, Boutreux and de Gennes [7] generalized the BCRE
equations to the case of a mixture of two species, in or-
der to study the segregation in mixtures poured in two-
dimensional silos. They proposed a theoretical formal-
ism, and a model (called “minimal model”) concentrating
mainly on the case of grains with the same size but differ-
ent surface properties. In this specific case, the minimal
model was able to explain the observed continuous segre-
gation, and predicted a power law behaviour of the con-
centrations. Károlyi et al. [8] have numerically simulated
the situation described by Boutreux and de Gennes [7],
using a granular media lattice gas model. The segregation
obtained in the simulation was in very good agreement
with the power law behaviour predicted in reference [7].
The simulation did not take into account a size difference
between the two species (the minimal model of Boutreux
et al. did not include such a difference). Very recently,
Makse, Cizeau, and Stanley [9] modified the equations
proposed by [7], to obtain a model for a mixture of grains
with a large difference of sizes: they could explain the com-
plete segregation by predicting an exponential behaviour
of the concentrations, and they could successfully repro-
duce the mechanism leading to stratification as observed
in the experiments [2].
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Fig. 1. Grains of the static phase are at rest. Grains of the rolling phase flow downhill, because of gravity. Exchanges between
the two phases are due to collisions of rolling grains with static grains.

In the present paper, part II of the series started by
Boutreux and de Gennes, we present a generalization of
the minimal model proposed by Boutreux et al. [7]. This
generalization is called “canonical model”, and is valid
when the two flowing species differ by their size and/or
their surface properties. As we shall see, contrary to the
model of Makse et al. [9], our generalization includes the
situation where the species have a small difference of sizes.
In the present article, we treat a particular case in order
to explain the principles of our model: we describe the im-
portant case where the particles have different sizes but
the same surface properties, and then the same angle of
repose θr; we also assume here that the sizes of the two
species are not too much different, and that the two den-
sities are close. The general case of the canonical model
that takes into account both the differences of size and of
surface properties will be published soon [10]. The present
paper is organized as follows: in the Section 2, we recall
the theoretical formalism of Boutreux and de Gennes. We
explain our microscopic description of the grain collisions,
and derive a model for grains with identical surface prop-
erties in the Section 3. We then show, in the Section 4,
that during the steady state filling of a two-dimensional
silo, we predict continuous segregation, with a power law
behaviour. We finally argue in the Section 5 that if the two
granular species have a large difference of size, segregation
happens directly inside the rolling phase; if we include this
effect in the canonical model, we are able to explain the
observed complete segregation and stratification. For this
case, we compare our model and the model proposed by
Makse et al. [9].

2 Model

Numerical simulations [11] have shown that in granular
surface flows, there is a sharp distinction between a static
phase where grains are at rest, and a thin rolling phase
on top of the static phase. As proposed by Bouchaud

et al. [6], this distinction is the starting point of the model
(see Fig. 1). The angle θ(x, t) denotes the local slope of
the interface, and h(x, t) is the height of the static phase.
We call φα(x, t) the volume fractions of the two species
of grains in the static phase just below the interface (here
the index α denotes the grain species: “l” for large, and
“s” for small); we have φl + φs = 1. The total thickness
of the rolling phase is R(x, t). We assume that the rolling
phase is homogeneous in the vertical direction, i.e. there
is no segregation already inside this phase. This is plau-
sible if the particle sizes are not too much different; we
come back to this point in the Section 5. We call Rα(x, t)
the “equivalent thicknesses” of the two different species in
the rolling phase: Rα(x, t) is equal to R multiplied by the
local volume fraction of the α grains in the rolling phase
(Rl +Rs = R).

As explained by Boutreux and de Gennes [7], the equa-
tion that describes the exchanges of grains between the
two phases, due to collisions of rolling grains with static
particles, is written:

ḣ = −(Ṙl|coll + Ṙs|coll), (1a)

where the dot denotes a time derivative, and where Ṙα|coll
describes the exchange of the α grains from the static
phase to the rolling phase. Equation (1a) can also be writ-
ten for a single species:

φαḣ = −Ṙα|coll. (1b)

For the rolling phase, the evolution equation for each
species is written:

Ṙα = v
∂Rα

∂x
+ Ṙα|coll, (1c)

where v is the speed of the rolling grains, convected down-
hill because of their weight. The value of the speed v is
determined by a balance between the gravitational force,
and the energy losses in collisions and friction between
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Fig. 2. The six different collision functions. The size difference between the two species allows to compare the functions. As a
consequence, we obtain θls < θr < θsl.

grains; the speed v is then an increasing function of the
restitution coefficient of the energy during collisions. Note
that experiments also show that the value of v is larger for
grains located in the upper part of the rolling phase [12];
in order to simplify our model, we will neglect this ef-
fect. Moreover, the value of v should depend on the slope
θ(x, t). Since in practice θ is nearly constant (its varia-
tions are smaller than ± 5◦), the speed v can be taken as
constant.

3 Generalized angles of repose

We still need a microscopic model of the grain collisions,
in order to express the exchange terms Ṙα|coll as func-
tions of θ and Rα. We calculate these terms in the first
order approximation, by considering only the binary col-
lisions between one rolling grain, and one grain at rest on
top of the static phase. When the rolling grain is large,
there exist four types of collisions: (1) auto-amplification:
another l grain starts to roll. This collision contributes
a term al(θ)φlRl to Ṙl|coll. The term is proportional to
Rl because the rolling phase being thin, all rolling grains
interact with the static phase. The collision function al
has the dimensions of a frequency; as a first approxima-
tion, it only depends on θ. (2) Cross-amplification: an s
grain starts to move. It contributes a term xl(θ)φsRl to

Ṙs|coll. (3) Auto-capture: the l rolling grain is captured
by an l static grain. It contributes a term −bl(θ)φlRl to

Ṙl|coll. (4) Cross-capture: the l rolling grain is captured
by an s static grain. It contributes a term −zl(θ)φsRl to

Ṙl|coll. This cross-capture was not considered in the min-
imal model [7]; it plays an important role when the grains
have different sizes. Four similar binary collisions happen

when the rolling grain belongs to the s species. We call
the corresponding collision functions as(θ), xs(θ), bs(θ),
and zs(θ). We therefore consider eight positive collision
functions. Since increasing the slope favours rolling, aα
and xα (amplification) are increasing functions of θ, and
bα and zα (capture) are decreasing functions of θ. The
size difference between the two species allows to compare
the functions. A large grain sets more easily a small grain
into move than the reverse: xl(θ) > xs(θ) (see Fig. 2).
A small grain is more easily captured by a large grain
than the reverse: zs(θ) > zl(θ). In the first order approxi-
mation, the probability that an auto-capture or an auto-
amplification happens does not depend on the grain size:
al(θ) ' as(θ) ≡ a(θ), and bl(θ) ' bs(θ) ≡ b(θ). The size
difference also yields:

xl > a > xs, zs > b > zl. (2)

In the present paper, we shall concentrate on the simplest
case among all the possible ones in the frame of the model.
Therefore, we take the simplest relationships consistent
with equation (2): a = (xl +xs)/2, and b = (zl + zs)/2, as
shown in Figure 2.

In order to simplify the exchange terms Ṙα|coll, it is
useful to consider El, the exchange from the static phase
to the rolling phase, due to collisions between l rolling
grains and both kinds of static grains. By considering the
involved binary collisions, we obtain the expression of El:
El = [(a − b)φl + (xl − zl)φs]Rl. In a model of surface
flows for a pure species, we would have: E = (a − b)R;
at the angle θ for which a = b, there would be no ex-
change (E = 0): this angle is the repose angle θr of
the pure grains. Moreover, in the case of a mixture, the
angle for which xl = zl will be called θls. Let us now
simplify the expression of El, by linearizing the collision
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functions with respect to θ. This approximation is possible
for two different reasons: firstly, θ is always close to the an-
gle of repose θr, as shown by the experiments made in cells
[2–4]; moreover, we consider here the case of two granular
species with similar sizes, as discussed in the last section
of the paper. In order to consider the simplest case, we
assume that the derivatives of the collision functions have
the same order of magnitude (as ∂θa ' ∂θxl). We finally
obtain:

El = γ[θ − θl(φs)]Rl, (3)

where:

θl(φs) = θr + (θls − θr)φs. (4a)

The constant γ is given by: γ = ∂θa − ∂θb. It has the
dimensions of a frequency; the larger the value of γ, the
more frequent the exchanges between phases. A dimen-
sional analysis shows that γ ' v/d, where d is the typical
size of grains. Figure 3 represents the angle θl(φs) given
by equation (4a). Expression (3) shows that θl(φs) is a
cross-over angle: equation (3) describes capture of l rolling
grains (El < 0) when θ < θl, and amplification (El > 0)
when θ > θl. The angle θl(φs) plays for a mixture of grains
the role of the constant θr for a pure species. We call θl the
generalized angle of repose of the l grains. This angle was
introduced in [9], where its expression was postulated and
not derived by considering microscopic collisions. When
no s grain is present on top of the static phase (φs = 0),
the generalized angle of repose θl is equal to the angle of
repose θr of the pure l species. If φs increases, the l rolling
grains amplify more easily the static grains, and stop less
easily in collisions with static grains: El increases i.e. the
generalized angle of repose θl(φs) decreases, as shown in
Figure 3. With similar approximations, we get a simplified
expression of the amplification of the rolling phase Es due
to collisions with s rolling grains: Es = γ[θ − θs(φl)]Rs,
where:

θs(φl) = θr + (θsl − θr)φl. (4b)

The generalized angle of repose θs(φl) of the s grains is
an increasing function of φl, as represented in Figure 3.
The generalized angles θl and θs have a key role in the
model. The angle of repose θr of both pure species is equal,
but due to the size difference between the particles we
have θls < θr < θsl, and θl(φs) < θs(φl) for any value of
φα: the l rolling species amplifies more easily the rolling
phase than the s rolling species. This behaviour difference
can be quantify through ψ ≡ θs − θl. The larger the size
difference between the two species, the larger the value
of ψ. Due to the approximations we made, here ψ is a
constant independent of φα.

It is now possible to write simpler expressions for the
exchange terms Ṙα|coll. Let us define the “collision ma-

trix” M̂ by [7]:

(
Ṙs|coll
Ṙl|coll

)
= M̂

(
Rs
Rl

)
. The previous cal-

culations of Eα yield:

M̂ =

(
γ[θ − θs(φl)]− xs(θ)φl xl(θ)φs

xs(θ)φl γ[θ − θl(φs)]− xl(θ)φs

)
,

(5a)

Fig. 3. The two generalized angles of repose: θl(φs) for the
large grains, and θs(φl) for the small ones. Since the two species
have the same surface properties, they have the same angle of
repose θr. But due to the size difference, we obtain θl < θs for
any value of φα. Here, the difference ψ ≡ θs − θl is constant.

where the cross-amplification functions can be written in
the following way

xs(θ) =
γ

2
(θ − θr) + x0, xl(θ) = xs(θ) +∆x. (5b)

The constants x0 and ∆x are two positive parameters of
the model. As we saw (Eq. (2)), the difference∆x = xl−xs
is due to the size difference between the two species; the
larger this size difference, the larger ∆x.

4 Segregation in steady state

In order to describe the segregation between the two
species, let us assume that we pour (at x = L) a con-
stant flux of a given mixture, into the 2D cell located
at 0 < x < L (Sect. 1); the interface rises uniformly at

the constant speed ḣ. Some results, found for this sit-
uation with the minimal model [7], can be generalized
to the case of a mixture of grains differing in their size.
Equations (1c, 1a) imply that the total height R(x) of the
rolling phase decreases linearly with respect to the dis-
tance to the pouring point (x = L): R(x) = xḣ/v. The to-

tal exchange between the two phases Ṙl|coll+Ṙs|coll can be
calculated, by using the expression of the collision matrix
(5a); equation (1a) then yields γ(θ−θl)Rl+γ(θ−θs)Rs =

−ḣ. In this expression the right hand side, being much
smaller than the terms of the left hand side, can be ne-
glected. We then get:

θ = θl(φs)
Rl

R
+ θs(φl)

Rs

R
· (6a)
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Fig. 4. The two volume fractions φα(x) in the static phase, calculated numerically, for the steady state solution when a mixture
(50% in volume for each species) is poured in a 2D cell. The model predicts continuous segregation inside the static phase. The
numerical calculation is made with θr = 40◦, ψ = 10◦, x0 = 0.3γ, and ∆x = 0.1γ.

In particular, in the steady state the value of the slope
θ is always contained between the two generalized angles
of repose θl and θs. By combining equations (1b, 5a, 6a),
we obtain a relationship between Rα/R and the volume
fractions in the static phase φα:

φs =

(
1 + ξ

Rl

xlRl + xsRs

)
Rs

R
(6b)

φl =

(
1− ξ

Rs

xlRl + xsRs

)
Rl

R
,

where ξ ≡ γψ − ∆x is a constant in our model. Equa-
tion (6b) shows that segregation appears: the grains of the
species α, for which φα > Rα/R, stop more easily than
the grains of the other species (φβ < Rβ/R). Experiments
[2,3] show that smaller grains stop first. Since Rα and xα
are always positive, this implies that in our model ξ must
be positive, i.e. γψ > ∆x. Returning to the definition of
the generalized angles of repose, one shows that this con-
dition is equivalent to zs(θ) +xs(θ) > zl(θ) +xl(θ): cross-
collisions involving small rolling grains are more frequent
than those involving large rolling grains.

In the model, segregation is an increasing function of
the parameter ξ: the larger the values of ψ and γ or the
smaller the value of ∆x, the stronger the segregation, i.e.
the larger the size difference between the species. At the
lower end of the slope (x � L), we have a complete pu-
rification of both species due to segregation: Rs(x)/R and
φs(x) tend to zero. In that region, it is possible to quan-
tify more precisely segregation, by doing a power law de-
velopment of these two quantities. We obtain that they
vary as xξ/x0 , where x0 = xs(θ = θr) as defined by equa-
tion (5b). Note that the exponent of this power law de-
pends on the coefficients of the collision matrix. Moreover
Figure 4 shows the volume fractions φα(x) for 0 < x < L,
calculated numerically [10] in the case where the poured

granular material is obtained by mixing the same volume
of each species: Rl = Rs at x = L. For this simulation,
we chose θr = 40◦, ψ = 10◦, x0 = 0.3γ, and ∆x = 0.1γ;
experiments [3] show that this corresponds to a size ratio
between the two species equal to approximately 1.2 (see
Sect. 5). Note that segregation clearly appears at x = L,
whereRl = Rs but φl < φs. Figure 4 shows that our model
predicts a continuous segregation, and not a complete one:
φs does not fall rapidly at x = L/2, but progressively de-
creases as x decreases. The functions Rα(x)/R and θ(x)
also vary progressively.

5 Discussion

We have presented a generalization of the model for sur-
face flows of granular mixtures, proposed by Boutreux and
de Gennes [7]. This generalization allows to describe mix-
tures of grains differing by their sizes. Let us call “ρ” the
ratio of the size of the large particles divided by the size
of the small ones. In this paper, we have assumed that
ρ was close to one, i.e. that the sizes of the two gran-
ular species were not too much different. In this case,
the rolling phase remains homogeneous and the collision
functions are smooth functions of the slope θ. Hence we
could linearized the collision functions with respect to θ.
We then showed that our canonical model predicted con-
tinuous segregation. When ρ < 1.5 (approximately), this
continuous segregation is observed in experiments [3], in
qualitative agreement with our model. Quantitatively, the
model predicts a power law behaviour for the concentra-
tions; this prediction could be tested by experiments. Note
that in the present paper, we restricted our scope to the
case where grains differ only by their size. The general
case of the canonical model, where the grain species dif-
fer by their size and/or their surface properties, will be
published soon [10] (part III of this series).



424 The European Physical Journal B

When the two species have a large difference of size,
i.e. ρ > 1.5 (approximately), experiments show that the
continuous segregation is replaced by a complete one,
or by stratification. Indeed, a new phenomena must ap-
pear inside the rolling phase, called interparticle “percola-
tion” [13]. This is a gravity-induced, size-dependent, void-
filling mechanism. The volume ratio and the mass ratio
between the two species being large, the small particles fall
through the gaps in between the large grains, and reach
the lower part of the rolling phase. The large particles stay
in the upper part of the phase, on top of the small grains.
Hence already inside the rolling phase, we expect some
segregation. The large rolling particles can not interact
any more with the static phase, due to a screen effect pro-
duced by the small rolling particles. We must include this
phenomena in our model of surface flows. When percola-
tion happens, the collision functions of the large grains
must be equal to zero, and the linear development we
made in the present paper is not valid any more for these
particles. Then the collision matrix must be written by
using the collision functions; all the functions correspond-
ing to collisions due to a large rolling grain must be set
to zero. A numerical simulation of this modified canonical
model has been done; a detailed description of our results
will be published soon [10]. The simulation shows that
we obtain either complete segregation or stratification, as
observed in the experiments [2–4].

This simulation is also consistent with the results
published by Makse, Cizeau, and Stanley [9], who already
described theoretically the complete segregation and the
stratification. Makse et al. [9] proposed a different model
for surface flows of a mixture of two granular species.
They use the theoretical formalism of Boutreux and de
Gennes [7], but do not do the linear development of the
collision functions. Instead, they propose some particular
expressions for these functions, justified by physical
arguments. Each function is equal to zero when the angle
θ is larger or smaller than a given value. By allowing that
the functions are set to zero, their model should implicitly
include the percolation effect. Indeed, they predict either
stratification or complete segregation, with an exponen-
tial behaviour. Then, the model of Makse et al. may be
well adapted to describe experiments where the two grain
species have a large difference of sizes. In contrast, our

canonical model (with a linear development of the colli-
sion functions) describes mostly the case where the species
have a small difference of sizes.

We thank P.-G. de Gennes, co-author of the first article of this
series, for his very precious help. This work also benefited from
many stimulating discussions with J.-P. Bouchaud, C. Gay, Y.
Grasselli, H. J. Herrmann, H. A. Makse, J. Rajchenbach, and
E. Raphaël.
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